На правах рукописи

КУШАТОВ Темур Абдурасулович

N-(2-КАРБОКСИФЕНИЛ)ОКСАЛАМИДЫ В СИНТЕЗЕ ХИНАЗОЛИНОНОВ И КОМПЛЕКСНЫХ СОЕДИНЕНИЙ ДВУХВАЛЕНТНОЙ МЕДИ

1.4.3. Органическая химия

АВТОРЕФЕРАТ диссертации на соискание учёной степени кандидата химических наук

Работа выполнена на кафедре Органической химии Федерального государственного бюджетного образовательного учреждения высшего образования «Казанский национальный исследовательский технологический университет»

Научный руководитель: Мамедов Вахид Абдулла оглы,

доктор химических наук, профессор

Официальные оппоненты: Штырлин Юрий Григорьевич,

доктор химических наук, доцент,

Казанский (Приволжский) федеральный университет, Научно-образовательный центр фармацевтики,

ведущий научный сотрудник **Никитина Лилия Евгеньевна**,

доктор химических наук, профессор

Казанский государственный медицинский университет, кафедра общей и органической химии,

заведующая кафедрой

Ведущая организация: Федеральное государственное автономное

образовательное учреждение высшего образования «Уральский федеральный университет имени

первого Президента России Б.Н. Ельцина»

Защита диссертации состоится **19 июня 2024 года** в 14 часов на заседании диссертационного совета 24.1.225.01 при Федеральном исследовательском центре «Казанский научный центр Российской академии наук» по адресу: г. Казань, ул. Ак. Арбузова, д. 8, ИОФХ им. А.Е. Арбузова — обособленное структурное подразделение ФИЦ КазНЦ РАН, конференц-зал.

С диссертацией можно ознакомиться в научной библиотеке ИОФХ им. А.Е. Арбузова – обособленного структурного подразделения ФИЦ КазНЦ РАН и на сайте http://www.iopc.ru.

Отзывы на автореферат просим направлять по адресу 420088 Казань, ул. Академика Арбузова — 8, ИОФХ им. А.Е. Арбузова ФИЦ КазНЦ РАН, учёному секретарю диссертационного совета.

Автореферат разослан «2» мая 2024 года

Учёный секретарь диссертационного совета 24.1.225.01, к.х.н.

Лоров А.В. Торопчина

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Простой эффективный способ синтеза N-(2-карбоксифенил)оксаламидов из доступного сырья разработан в Лаборатории химии гетероциклических соединений (ХГС) Института органической и физической химии им.

А.Е. Арбузова (ИОФХ им. А.Е. Арбузова). Эти соединения одновременно являются производными антраниловой и щавелевой кислот, широко представленными в природе, функционирующими в живых организмах и обладающими многими полезными свойствами, в том числе фармакологического значения. В то же самое время полифункциональность N-(2-карбоксифенил)оксаламидов открывает большие возможности для

синтетических модификаций. Благодаря наличию в составе карбоксильной и амидной групп, расположенных в соседних положениях бензольного кольца, эти соединения представляют интерес прежде всего как предшественники различных хиназолиноновых производных, среди которых большое количество лекарственных соединений природного и синтетического происхождения и веществ с различной биологической активностью, что побуждает к проведению исследований по поиску новых производных хиназолинонов и расширению спектра синтетических методов их получения. Наличие карбоксильной группы в составе N-(2-карбоксифенил)оксаламидов делает их удобными объектами для комплексообразования, а полидентатность данных лигандов, связанная с оксаламидной группой, позволяет рассчитывать на конструирование металл-органических полимерных структур. Выбор двухвалентной меди для целей комплексоообразования был определён её физиологической важностью в организме человека. В связи с вышесказанным, развитие направленного синтеза биологически активных соединений, а именно хиназолинонов и их конденсированных аналогов, и конструирование металл-органических структур на основе N-(2-карбоксифенил)оксаламидов и солей двухвалентной меди является актуальной задачей.

Степень разработанности темы исследования. До времени получения планируемых к исследованию N-(2-карбоксифенил)оксаламидов в лаборатории ХГС ИОФХ им. А.Е. Арбузова (RSCAdv. **2016**, 6, 27885) они не были описаны в литературе, и их синтетический и комплексообразующий потенциал не исследовался в каких-либо работах.

Целью работы явилась разработка новых удобных эффективных методов синтеза хиназолиноновых производных на основе N-(2-карбоксифенил)оксаламидов и использование последних в комплексообразовании с $CuCl_2$ и создании металлорганических полимерных структур.

Реализация поставленной цели достигалась путём решения следующих задач:

- анализ литературы по синтезу и практической значимости хиназолиновых производных;
- синтез широкого набора амидов 3-(2-нитроарил)глицидной кислоты из 2нитробензальдегида и амида или анилидов хлоруксусной кислоты для дальнейшего превращения их в *N*-(2-карбоксифенил)оксаламиды;
- синтез N-(2-карбоксифенил)оксаламида и N^1 -(2-карбоксифенил)- N^2 -(арил)оксаламидов из амида и анилидов 3-(2-нитроарил)глицидной кислоты с целью дальнейшего использования их в синтезе хиназолин-4-оновых производных;

- синтез серии хиназолин-4-онов с арильным заместителем в третьем положении и карбоксанилидным во втором с целью тестирования их на биологическую активность и выявления закономерности «биологическая активность—структура»;
- синтез хиназолин-4-онов с арильным заместителем в третьем положении и свободным вторым положением;
- синтез 6-гало-3-(2-нитрофенил)хиназолин-4-онов с использованием на начальных этапах 2-нитробензальдегида вместо дорогостоящих 5-гало-2-нитробензальдегидов.
- превращение 3-(2-нитроарил)хиназолин-4-онов в бензимидазо[2,1-b]-хиназолин-12-оны
- 6-дезоксо-6-азааналоги природного алкалоида триптантрина.
- синтез хиноксалино[2,1-b]-хиназолин-6,12(5H)-дионов из N-(2-карбоксифенил)-оксаламидов и opmo-фенилендиаминов (o-ФДА);
- синтез комплексов двухвалентной меди с N-(2-карбоксифенил)оксаламидными лигандами;
- синтез и исследование структуры медных координационных полимеров с N-(2-карбоксифенил)оксаламидными лигандами.

Научная новизна работы:

- разработан новый метод синтеза новых 2-карбоксанилидо-3-арилхиназолин-4-онов и выявлена их цитотоксическая активность в отношении клеточной линии эпителиоидной карциномы шейки матки (M-Hela) без токсического действия на клетки печени человека $Chang\ liver$;
- разработан новый метод синтеза незамещённых во второе положение 3-арилхиназолин-4-онов – соединений, перспективных для дальнейших модификаций;
- предложен новый способ получения фармакологически значимых бензимидазо[2,1-b]хиназолин-12(6H)-онов 6-дезоксо-6-азааналогов природного алкалоида триптантрина; синтезирован ряд новых соединений с редкой хиноксалино[2,1-b]хиназолин-6,12(5H)-дионовой системой;
- получен новый медный 1D координационный полимер с N^1 -(2-карбоксифенил)- N^2 -(4-этилкарбоксифенил)оксаламидным лигандом (L) состава [4.5Cu·3L·2ДМСО·1.5H₂O]_n с уникальной структурой, представленной тремя различно координированными к атому меди типами лигандов и пятью различными по координации атомами меди (пяти- и шестикоординированные), один из которых связывает мономерные звенья между собой.

Теоретическая значимость работы. Показано, что N^1 -(2-карбоксифенил)- N^2 -(арил)оксаламиды и N-(2-карбоксифенил)оксаламид (отличаются наличием или отсутствием арильного заместителя при втором атоме азота) по-разному ведут себя в реакциях с ароматическими аминами (анилином и его производными) в полифосфорной кислоте (ПФК) и приводят к хиназолинонам с карбоксанилидной группой во втором положении или со свободным вторым положением соответственно, а в реакциях с o-ФДА (2-аминоанилином и его производными) в аналогичных условиях оба типа оксаламидных производных дают один и тот же хиноксалино[2,1-b]хиназолин-6,12(5H)-дионовый продукт. Полученный набор результатов в совокупности с данными физико-химических методов исследования позволил выяснить механизмы протекания процессов.

Практическая значимость работы. Разработаны простые и удобные методы синтеза (2-карбоксанилидо-3-арилхиназолин-4-онов производных арилхиназолин-4-онов), открывающие путь к целенаправленному получению большого разнообразия их производных, в том числе конденсированных бигетероциклических систем (бензимидазо[2,1-b]хиназолин-12(6H)-онов и хиноксалино[2,1-b]хиназолин-6,12(5H)-дионов), с целью выявления практически значимых свойств. Представлены результаты первичного скрининга цитотоксической активности серии синтезированных 2-карбоксанилидо-3-арилхиназолин-4-онов, проявивших высокую активность в отношении раковых клеточных линий *M-Hela* при отсутствии токсического действия на клетки печени человека Chang liver. Предложен новый способ синтеза бензимидазо[2,1-b]хиназолин-12(6H)-онов – соединений с известной биологической активностью, 6-дезоксо-6-азааналогов природного алкалоида триптантрина. Получен новый 1D-координационный полимер меди(II) состава $[4.5\text{Cu}\cdot3\text{L}\cdot2\text{ДМCO}\cdot1.5\text{H}_2\text{O}]_n$ с N^1 -(2-карбоксифенил)- N^2 -(4-этилкарбоксифенил)оксаламидным лигандом, охарактеризована его структура и обозначено направление поиска практического применения.

Методология исследования, заключающегося в разработке методов синтеза фармакологически значимых структур, комплексных соединений и координационных полимеров, базируется на стратегиях классического и современного органического синтеза, в том числе фрагментарном подходе конструирования желаемых структур.

На защиту выносятся следующие положения:

- обоснование актуальности цели и задач работы;
- синтез 2-карбоксанилидо-3-арилхиназолин-4-онов и их цитотоксическая активность в отношении клеточной линии эпителиоидной карциномы шейки матки;
- синтез 3-арилхиназолин-4-онов, незамещённых во второе положение, как перспективных соединений для дальнейшей функционализации при конструировании фармакологических значимых веществ;
- синтез 4-гало-*N*-(2-карбоксифенил)оксаламидов с использованием на начальных стадиях 2-нитробензальдегида вместо дорогостоящих 5-гало-2-нитробензальдегидов;
- новый метод синтеза бензимидазо[2,1-b]хиназолин-12(6H)-ононов соединений с известной биологической активностью, 6-дезоксо-6-азааналогов природного алкалоида триптантрина;
- синтез хиноксалино[2,1-b]хиназолин-6,12(5H)-дионов соединений с редкой конденсированной бигетероциклической системой;
- синтез комплексов *N*-(2-карбоксифенил)оксаламидов с двухвалентной медью;
- синтез и структурные особенности медного 1D координационного полимера с N^1 -(2-карбоксифенил)- N^2 -(4-этилкарбоксифенил)оксаламидным лигандом.

Достоверность полученных результатов работы обеспечена использованием набора физико-химических методов исследования (инфракрасной (ИК) спектроскопии, спектроскопии ядерного магнитного резонанса (ЯМР) на ядрах ¹H, ¹³C, ¹⁵N, масс-спектрометрии (МС), элементного анализа, рентгеноструктурного анализа (РСА)) для установления состава и структуры вновь синтезированных соединений, многократной

повторяемостью результатов эксперимента, совпадением характеристик известных соединений с описанными в литературе.

Результаты диссертационной работы **апробированы** на 7 научных конференциях с российским и международным участием (с публикацией тезисов), неоднократно докладывались на ежегодных итоговых конференциях ИОФХ им. А.Е. Арбузова и Казанского национального исследовательского технологического университета (КНИТУ), **изложены** в четырёх статьях в рецензируемых научных изданиях, индексируемых в базах данных *Scopus* и *Web of Science*.

Объём и структура работы. Диссертация состоит из Введения, трёх глав, Заключения, Списка сокращений, Списка литературы и трёх Приложений. Первая глава представляет собой обзор современной литературы (начиная с 2015 года) по синтезу и практическому применению хиназолинов, хиназолинонов и хиназолиндионов. Вторая глава – обсуждение собственных результатов, включает в себя 33 схемы, 9 таблиц и 14 рисунков кристаллической структуры синтезированных соединений. Третья глава – это проведённых экспериментов c представлением физико-химических характеристик синтезированных соединений. В Заключении обобщены результаты работы и сформулированы выводы. Список литературы содержит 188 библиографических наименований. В приложениях представлены структуры обсуждаемых в Литературном обзоре (Приложение 1) и синтезированных в этой работе (Приложение 2) соединений, приводятся примеры спектров ЯМР и МС (Приложение 3). В ходе выполнения работы синтезировано и подробно охарактеризовано современными физико-химическими методами исследования 85 соединений. Работа изложена на 150 страницах.

Личный вклад автора. Цель и задачи работы были определены научным руководителем, доктором химических наук, профессором В.А. Мамедовым. Обсуждение результатов проводилось автором совместно с научным руководителем В.А. Мамедовым и кандидатом химических наук, старшим научным сотрудником лаборатории ХГС ИОФХ им. А.Е. Арбузова В.Л. Мамедовой. Экспериментальная часть работы выполнена автором. Автор принимал участие в подготовке материалов к публикациям и анализе данных спектральных, спектрометрических, дифракционных, микробиологических методов исследования.

Спектральные и спектрометрические характеристики были получены в Лаборатории коллективного спектро-аналитического центра изучения строения, состава и свойств веществ и материалов ИОФХ им. А.Е. Арбузова ФИЦ КазНЦ РАН, рентгеноструктурные исследования были проведены в Лаборатории дифракционных методов исследования ИОФХ им. А.Е. Арбузова, данные микробиологических исследований получены в Лаборатории микробиологии ИОФХ им. А.Е. Арбузова.

Работа поддержана Российским научным фондом (гранты № 14-23-00073-п, 18-13-00315-п).

Автор благодарит научного руководителя Вахида Абдулла оглы Мамедова и Веру Леонидовну Мамедову за неоценимую помощь при выполнении этой работы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В лаборатории XГС ИО Φ X им. А. Е. Арбузова был разработан способ получения N-(2-карбоксифенил)оксаламидов 2 перегруппировкой амидов арил)глицидной кислоты 1, получаемых, в свою очередь, в условиях конденсации Дарзана из *орто*-нитробензальдегидов и амидов хлоруксусной кислоты (схема 1) (RSC Adv. 2016, 6, 27885). Эта перегруппировка проста в исполнении, хотя представляет собой сложный окислительно-восстановительный процесс внутримолекулярного сопровождаемый разрывом С2-О и С2-С3 связей оксиранового кольца в 1 и образованием новой N-C2 связи в 2 (номера атомов в соединении 2 на схеме 1 проставлены таким образом, чтобы было понятно перемещение атомов в процессе перегруппировки), идущая с сохранением молекулярной массы и ведущая к соединениям с большим синтетическим потенциалом, раскрытие которого было целью данной работы.

Схема 1

Соединения **2** являются производными антраниловой кислоты и могут рассматриваться в качестве объектов для конструирования хиназолин-4-оновой системы **3**. Для достраивания хиназолинового каркаса при использовании антраниловой кислоты необходимы реагенты, поставляющие атом углерода во второе положение хиназолина и атом азота в третье положение. В случае соединения **2** атомом углерода во втором положении может стать C1 в оксаламидном фрагменте, а атом азота и заместитель в третье положение хиназолина может доставить, например, анилин (схема 2). Придерживаясь этой стратегии, мы приступили к созданию хиназолин-4-онов.

Схема 2

Синтез 2-карбоксанилидо-3-арилхиназолин-4-онов из N^1 -(2-карбоксифенил)- N^2 -(арил)оксаламидов

Согласно стратегии, показанной на схеме 2, из N^1 -(2-карбоксифенил)- N^2 -(арил)оксаламидов 2 (R = Ar) в реакциях с анилином и его замещёнными в бензольное кольцо производными в ПФК при 170 °C было синтезировано 18 новых представителей 2-карбоксанилидо-3-арилхиназолин-4-онов 3 (схема 3). В литературе обнаружено два способа получения соединений такого типа: из антраниловой кислоты и оксалдиимидоилдихлоридов получены 2-карбоксанилидо-3-арилхиназолин-4-оны с одинаковыми арильными заместителями (Ar 1 = Ar 2) /Eur. J. Org. Chem. 2001, 1503/, из

анилидов антраниловой кислоты серией превращений с использованием дорогостоящих и малодоступных реагентов и катализаторов получены два представителя 2-карбоксанилидо-3-арилхиназолин-4-онов с разными арильными заместителями (*Tetrahedron* **2005**, *61*, 4297). Наш метод позволяет получать 2-карбоксанилидо-3-арилхиназолин-4-оны как с одинаковыми, так и с разными арильными заместителями (таблица 1).

Схема 3

Таблица 1 Выходы и концентрации полумаксимального ингибирования роста клеток (IC₅₀) *M-Hela* и *Chang liver* для 2-карбоксанилидо-3-арилхиназолин-4-онов **3**

No	Ar ¹	Ar ²	3	выход, %	$IC_{50}(\mu M)$	
					M-Hela	Chang liver
1	$4-BrC_6H_4$	Ph	3a	63	35.1±2.9	>100
2	4-BrC ₆ H ₄	4-BrC ₆ H ₄	3b	65	47.2±3.6	86±7.1
3	2-BrC ₆ H ₄	2-MeC ₆ H ₄	3c	62	54.0±4.4	>100
4	4-ClC ₆ H ₄	4-ClC ₆ H ₄	3d	79	>100	>100
5	4-ClC ₆ H ₄	3-ClC ₆ H ₄	3e	68	>100	>100
6	4-ClC ₆ H ₄	2-ClC ₆ H ₄	3f	80	>100	>100
7	4-ClC ₆ H ₄	4-FC ₆ H ₄	3g	64	90.0±6.9	>100
8	4-ClC ₆ H ₄	2-FC ₆ H ₄	3h	69	6.8±0.6	>100
9	3-ClC ₆ H ₄	4-ClC ₆ H ₄	3i	73	>100	>100
10	3-ClC ₆ H ₄	2-ClC ₆ H ₄	3j	82	>100	>100
11	2-ClC ₆ H ₄	4-ClC ₆ H ₄	3k	73	>100	>100
12	2-ClC ₆ H ₄	2-ClC ₆ H ₄	31	60	>100	>100
13	2-ClC ₆ H ₄	4-FC ₆ H ₄	3m	65	>100	>100
14	2-ClC ₆ H ₄	2-FC ₆ H ₄	3n	60	>100	>100
15	4-FC ₆ H ₄	Ph	30	65	>100	>100
16	4-FC ₆ H ₄	4-FC ₆ H ₄	3p	71	27.0±2.1	>100
17	2-FC ₆ H ₄	2-FC ₆ H ₄	3q	66	30.0±2.8	>100
18	3-NO ₂ C ₆ H ₄	3-NO ₂ C ₆ H ₄	3r	67	>100	>100
			доксорубицин		3.0±0.1	1.3±0.1
	тамоксифен		28.0±2.5	46.2±3.5		

Все синтезированные соединения 3 были проверены на цитотоксическую активность в отношении клеточных линий M-Hela и Chang liver. В таблице 1 приведены данные IC₅₀ для соединений 3. По отношению к клеткам эпителиоидной карциномы шейки матки значение IC_{50} для соединения **3h** оказалось сопоставимо с IC_{50} для препарата сравнения доксорубицина, а для соединений **3р** и **3q** – с IC_{50} для тамоксифена. Важно отметить, что по отношению к клеточной линии Chang liver все тестируемые соединения 3 оказались нетоксичными (или малотоксичными, как 3b) в отличие от доксорубицина и тамоксифена. Мы попытались установить закономерность в цитотоксическом действии на клетки М-Hela соединений 3 в зависимости от наличия того или иного атома галогена (Br, Cl, F) в арильных фрагментах, в зависимости от положения атомов галогена в арильном фрагменте (пара, мета, орто) и в зависимости от того, в каком арильном фрагменте атом галогена находится (Ar1 или Ar2). Из таблицы 1 видно, что соединения с бромным заместителем в Ar1 (см. строки 1-3) в любом сочетании с заместителями в Ar2 (H, Me, Br) проявляют цитотоксическую активность по отношению к M-Hela, чего не скажешь про атомы хлора (см. строки 4-6 и 9-14) и фтора (строка 15) в Ar1, которые делают соединения 3 активными лишь в сочетании с атомами F в Ar2 (см. строки 7, 8, 16, 17). При этом соединения 3 с атомом хлора в *орто* положении Ar1 даже при наличии атомов фтора в Ar2 не проявляют цитотоксического действия на *M-Hela* (см. строки 13, 14), что можно связать с влиянием стерического эффекта на конформацию молекулы, а как следствие, и на биологические свойства. Значительно более компактный атом фтора в *орто*-положении Ar1 не оказывает значительного влияния на цитотоксичность соединений (см. строки 16, 17). Из данных таблицы 1 можно заметить значительную разницу в цитотоксической активности соединений 3 с атомами фтора в *пара* и *орто* положениях Ar2 (строки 7 и 8). Большую цитотоксическую активность соединения 3h по сравнению с 3g можно объяснить совокупностью эффектов, обусловленных наличием атома фтора в *орто* положении Ar2, таких как стерический, индукционный, электростатический. Из анализа данных микробиологического исследования можно ожидать улучшенных показателей для соединения с бромным заместителем в *пара* положении Ar1 и фторным заместителем в *орто* положении Ar2; работа в данном направлении проводится.

Таким образом, разработан эффективный метод синтеза широкого ряда 2-карбоксанилидо-3-арилхиназолин-4-онов, среди которых найдены вещества с цитотоксической активностью в отношении клеточной линии эпителиоидной карциномы шейки матки при отсутствии токсичного действия на клетки печени человека.

Синтез 3-арилхиназолин-4-онов из N-(2-карбоксифенил)оксаламида

Аналогично синтезу хиназолинонов **3** (см. схему **3**) в реакциях N-(2-карбоксифенил)оксаламида **2а**, полученного из *орто*-нитробензальдегида и α -хлорацетамида (см. схему 1; R = H), с анилинами в тех же условиях можно было ожидать образования 2-карбоксамидо-3-арилхиназолин-4-онов **3s**, однако из реакций выделяли 3-арилхиназолин-4-оны **4** (схема 4). Характеристичным сигналом в спектрах ЯМР ¹Н этих соединений является синглет в области 8.29-8.54 м.д., соответствующий протону во втором положении хиназолиноновой системы. Структура хиназолинона **4i** установлена

методом РСА. Возможно, в реакционных смесях образуются соединения **3s**, которые при выделении, в процессе обработки реакционных смесей водой, претерпевают дальнейшие превращения, показанные на схеме **5**. Таких превращений не происходило, или они не были определяющими, в соединениях **3** с анилидным фрагментом во втором положении хиназолинов, описанных в таблице 1, что может быть связано с большей делокализацией неподелённой электронной пары на анилидном атоме азота по сравнению с амидным, что затрудняет его протонирование.

Схема 4

$$\begin{array}{c} O \\ Ar \\ 3s \\ O \\ \end{array} \\ \begin{array}{c} O \\ NH_2 \\ \end{array} \\ \begin{array}{c} I \Phi K, H_2 NAr \\ 160 \ ^{o}C, 6 \ ^{q} \\ \end{array} \\ \begin{array}{c} O \\ NH_2 \\ \end{array} \\ \begin{array}{c} Ar = 4 \text{-MeC}_6 H_4 \ (\textbf{a}, 79\%), 2 \text{-MeC}_6 H_4 \ (\textbf{b}, 86\%), \\ 2 \text{-BrC}_6 H_4 \ (\textbf{c}, 81\%), 4 \text{-CIC}_6 H_4 \ (\textbf{d}, 88\%), \\ 2 \text{-CIC}_6 H_4 \ (\textbf{e}, 92\%), 2 \text{-FC}_6 H_4 \ (\textbf{b}, 81\%), \\ 3 \text{-NO}_2 C_6 H_4 \ (\textbf{g}, 82\%), 2 \text{-NO}_2 C_6 H_4 \ (\textbf{h}, 79\%), \\ 5 \text{-CI-2-NO}_2 C_6 H_4 \ (\textbf{i}, 80\%) \\ \end{array} \\ \begin{array}{c} \textbf{4a} \\ \end{array}$$

Схема 5

Хиназолиноны **4** со свободным вторым положением являются удобными объектами для дальнейших превращений и перспективны в синтезе биологически активных соединений.

3-(*орто*-Нитрофенил)хиназолин-4-оны в синтезе бензимидазо[2,1-*b*]хиназолин-12(6*H*)-онов — 6-дезоксо-6-азааналогов природного алкалоида триптантрина

Хиназолины 4h-k с *орто*-нитроарильным фрагментом в третьем положении были использованы в реакциях восстановительной циклизации с использованием дитионита натрия в водно-диоксановой среде и цинка в уксусной кислоте, в результате которых были 6-дезоксо-6-азааналоги природного алкалоида конденсированные бигетероциклы 5 (схема 6). Хотя в лаборатории ХГС было проведено много работ по успешному восстановлению нитрогруппы в различных соединениях дитионитом натрия /Tetrahedron 2017, 73, 5082; Tetrahedron Lett. 2018, 59, 3923; Arkivoc **2023**, *iv*, 38; *J. Org. Chem.* **2018**, 83, 13132/, в данном случае более эффективным оказался метод с цинком. На схеме 6 для соединений 5a и 5b в скобках приведены выходы в процессах с Na₂S₂O₄ и Zn соответственно. Схема 7 демонстрирует два возможных пути процессов восстановительной циклизации на примере превращения соединений 4а в 5а. Процессы могут идти через восстановление нитрогруппы до гидроксиаминной группы с дальнейшей циклизацией, сопровождаемой выбросом воды, или через восстановление нитрогруппы до аминогруппы с дальнейшими циклизацией и аутоокислением.

Схема 6

$$R = R^1 = H (h); R = H, R^1 = Cl (i);$$
 $R = Br, R^1 = H (c, 83\%); R = Cl, R^1 = H (d, 88\%)$

Схема 7

$$\begin{array}{c} \text{Na}_2\text{S}_2\text{O}_4 + 2\text{H}_2\text{O} & \longrightarrow 2\text{Na}\text{HSO}_3 \\ \text{Zn} + 2\text{AcOH} & \longrightarrow \text{Zn}(\text{OAc})_2 \\ \\ \downarrow \\ \text{Aa} & & \downarrow \\ \text{NNO}_2 & & \downarrow \\ \text{NN$$

Соединения **4j** и **4k** с бромным и хлорным заместителями в шестом положении хиназолиновой системы были получены без использования дорогостоящих 5-гало-*орто*нитробензальдегидов, как это можно было сделать в соответствии со схемами 1 и 4, а с заменой их на более дешёвый незамещённый галогенами *орто*-нитробензальдегид. Из *орто*-нитробензальдегида и α -хлорацетамида по схеме 1 получали оксаламидное производное **2a** (R = H), которое при галогенировании свободным бромом и хлором давало оксаламидные производные **2n** и **2o** с атомами галогена в четвёртом положении

бензольного кольца. Соединения **2n** и **2o** были использованы далее для получения хиназолинонов с *орто*-нитрофенильным заместителем в третьем положении в условиях, показанных на схеме 4. Наличие атома галогена в бензофрагменте

хиназолиноновой системы может способствовать замене его на алкильную, алкенильную, алкинильную, арильную группы в реакциях кросс-сочетания Негиши, Хека, Соногашира, Сузуки-Мияура, Стилле, Кумада-Такао-Корриу.

Бензимидазо[2,1-*b*]хиназолин-12(*6H*)-оны **5а-d** описаны в литературе, они имеют фармакологическую ценность, и для них разработано много способов получения, однако среди этих способов не так много примеров использования хиназолиновых производных в качестве исходных соединений — эти методы наряду с нашим продемонстрированы на схеме 8. В известных методах отщепляют НВг от аминогруппы во втором положении и от *орто*-бромфенильного заместителя в третьем, или отщепляют НВг или НІ от свободного третьего положения и от *орто*-галогенфениламинного фрагмента во втором положении. Мы впервые предлагаем метод получения бигетероциклов **5** из **4** в процессе, включающем в себя восстановление нитрогруппы и циклизацию с участием кислорода воздуха,

сопровождаемую выделением воды. Последний факт делает метод более экологичным по сравнению с известными методами превращения хиназолиноновых производных в бензимидазохиназолиноны 5.

Схема 8

Таким образом, впервые в условиях восстановительной циклизации 3-(2нитроарил)хиназолин-4-оны превращены в конденсированные бензимидазохиназолиноновые бигетероциклы с известными биологическими свойствами — 6-дезоксо-6-азааналоги природного соединения триптантрина, используемого в медицине.

N-(2-Карбоксифенил)оксаламиды в реакциях с *орто*-фенилендиаминами

N-(2-Карбоксифенил)оксаламиды **2а,п,о** (см. схему 9) и N^1 -(2-карбоксифенил)- N^2 -(арил)оксаламиды **2b,f,g,k,m** (см. схему 10 и таблицу 2) были введены в реакцию с o-фенилендиаминами в условиях, аналогичных реакциям этих соединений с анилинами (см. схемы 3 и 4) с целью выявления влияния второй аминогруппы на ход процессов. Во всех случаях из реакций выделяли соединения с редко встречающейся конденсированной бигетероциклической системой, а именно хиноксалино[2,1-b]хиназолин-6,12(5H)-дионы **6** (схемы 9 и 10). Схема 11 демонстрирует путь образования соединений **6**.

Схема 9

Схема 10

Схема 11

В литературе обнаружен лишь один бигетероцикл, аналогичный **6**, который получен другим способом и отличается от наших наличием заместителя при пятом атоме азота /*nameнm*, *PCT Int. Appl.* 2009027820, 05.03.2009/ (см. схему 12).

Схема 12

Таким образом, в реакциях N-(2-карбоксифенил)оксаламидов с *орто*фенилендиаминами получены конденсированные бигетероциклические соединения с редкой хиноксалиноно-хиназолиноновой системой.

N-(2-Карбоксифенил) оксаламиды в комплексообразовании с CuCl₂ и создании координационных полимеров

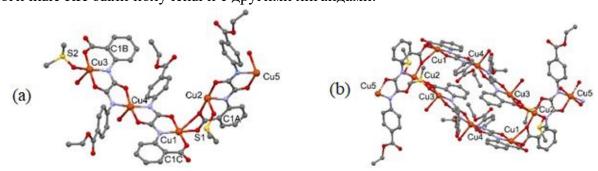
Наличие карбоксильной группы в составе N-(2-карбоксифенил)оксаламидов **2** предполагает участие её в процессах солеобразования, в том числе с переходными металлами (металлами побочных подгрупп периодической системы Менделеева с электронами на d и f орбиталях), которые, в свою очередь, будут участвовать в координации других атомов в составе молекулы. В составе соединений **2** помимо карбоксильной группы в координации с переходными металлами может участвовать оксаламидный фрагмент, что даёт основание предполагать создание на основе этих лигандов металл-органических полимерных структур.

Соединения **2** трудно растворимы в каких-либо растворителях, поэтому, прежде чем вводить их в реакции с солями переходных металлов мы перевели их в водорастворимые триэтиламмониевые соли **7** (схема 13).

Схема 13

OH NEt₃

$$A = H (a), Ph (b), 2-MeC_6H_4 (c), 4-MeOC_6H_4 (d), 4-CIC_6H_4 (e), 4-FC_6H_4 (f), 2-FC_6H_4 (g), 4-EtO(O)CC_6H_4 (h)$$


Триэтиламмониевые соли **7** были использованы в комплексообразовании с CuCl₂·2H₂O. Соль меди была выбрана для комплексообразования не случайно. В перспективе как лиганды, так и координационные соединения на их основе планируется использовать в поиске новых лекарственных форм, и медь, как физиологически важный микроэлемент в организме человека, будет способствовать улучшению их свойств.

Медные комплексы биядерной структуры $[Cu(H_2L)_2 \cdot H_2O]_2$ с N-(2-карбоксифенил)оксаламидными лигандами были получены смешением водных растворов солей **7** и $CuCl_2 \cdot 2H_2O$ при комнатной температуре (схема 14).

Схема 14

Молекулярная структура биядерного медного комплекса $\mathbf{8g}$ (R = 2-FC₆H₄) была определена методом PCA. Координация атома меди лигандами происходит с участием обоих атомов кислорода карбоксильной группы, при этом оксаламидный фрагмент лиганда не задействован в комплексообразовании.

Длительное нагревание растворов комплексов **8a-h** в ДМСО при температуре 165 °C в открытой посуде приводило к образованию углеподобных твёрдых тугоплавких (т. пл. > 400 °C) масс с наличием сходных полос поглощения в ИК спектрах и близких значений отношения меди и серы в них, определённых рентгено-флуоресцентным анализом. С помощью РСА была установлена структура КП 9h, полученного на основе комплекса 8h $(R = 4-EtO_2CC_6H_4)$. Симметрично независимая часть триклинной элементарной ячейки КП **9h** содержит 4.5 атома Cu, 3 молекулы лиганда, 2 молекулы ДМСО и 1.5 молекулы воды координационных связей За счёт В кристалле центросимметричные циклические кластеры, включающие восемь атомов меди (Cu1-Cu4 и их симметричные аналоги) (см. рис. 1b). Четыре атома Cu (атомы Cu2 и Cu3 и их симметричные аналоги) являются пятикоординированными, причём карбоксильными группами и оксаламидными фрагментами в молекулах лигандов в координации участвуют также молекулы ДМСО. Другие четыре атома Cu (атомы Cu1 и Cu4 и их симметричные аналоги) шестикоординированы и в их координации участвуют атомы О карбоксильных групп и атомы О и N оксаламидных фрагментов. Связывание кластеров в 1D-полимер осуществляется атомами Cu5 (см. рис. 2). Фрагмент 4-EtO₂CC₆H₄ не участвует в координации с медью, и это является косвенным свидетельством того, что аналогичные КП были получены и с другими лигандами.

Рисунок 1 Молекулярная структура координационного полимера **9h** в кристалле: (а) асимметричная часть и (b) мономерное звено.

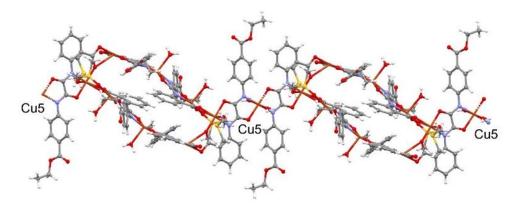


Рисунок 2 Фрагмент цепи 1D координационного полимера 9h.

Все атомы О и N карбоксильных групп и оксаламидных фрагментов всех трёх независимых лигандов A, B и C в 9h координированы к атомам Cu, и в кристалле отсутствуют свободные донорно-акцепторные группы, образовывать классические водородные связи, за исключением молекул воды. Совокупное действие водородных связей О-Н...О с участием молекул воды, водородных связей С-Н...О и π-контактов приводит к связыванию 1D координационных полимерных цепей и формированию 2D структур. Двумерные слои организованы трёхмерную супрамолекулярную структуру за счёт водородных связей типа С-Н...О. В трёхмерной упаковке имеются значительные пустоты, заполненные молекулами ДМСО и Н2О -«блуждающими растворителями». Полученные данные о структуре 9h позволяют весьма оптимистично рассматривать это соединение и его ближайшие синтетические аналоги в качестве материалов для молекулярных фильтров и ёмкостей для хранения газов.

ЗАКЛЮЧЕНИЕ

В данной работе впервые исследовались возможности N-(opmoкарбоксифенил)оксаламидов синтезе хиназолиноновых В производных И комплексообразовании. В зависимости от заместителя R (Ar или H) при втором атоме азота в оксаламидном фрагменте N-(opmo-карбоксифенил)оксаламидов в реакциях с анилинами в полифосфорной кислоте получены 2-карбоксанилидо- или незамещённые во второе положение 3-арилхиназолин-4-оны, первые из которых показали цитотоксичекскую активность в отношении клеток эпителиоидной карциномы шейки матки M-Hela при отсутствии токсического действия на клетки печени Chang liver. 3-(2-opmo-Нитроарил)хиназолин-4-оны в условиях восстановления нитрогруппы были превращены в конденсированные бигетероциклические системы с известными фармакологическими свойствами – 6-дезоксо-6-азааналоги природного алкалоида триптантрина. В реакциях *N*-(орто-карбоксифенил)оксаламида орто-фенилендиаминами получены c хиноксалиноно-хиназолиноновые конденсированные бигетероциклы. триэтиламмониевых солей N-(орто-карбоксифенил)оксаламидов с CuCl₂·2H₂O получены карбоксилатные биядерные комплексы, на основе которых созданы 1D координационные полимеры, структура и состав одного из которых, а именно с N^1 -(2-карбоксифенил)- N^2 -(4этилкарбоксифенил)оксаламидным лигандом, были установлены методом РСА. В образовании этого КП состава [4.5Cu·3L·2ДМСО·1.5H₂O] помимо карбоксильной группы задействованы все гетероатомы оксаламидного фрагмента, но не задействован 4этилкарбоксифенильный фрагмент, что позволяет сделать предположение об образовании аналогичных КП в случаях использования комплексов с другими N-(opmoкарбоксифенил)оксаламидными лигандами. Обобщённые результаты данной работы представлены на схеме 16.

Основные результаты и выводы работы:

В реакциях N^1 -(2-карбоксифенил)- N^2 -(арил)оксаламидов с анилинами в полифосфорной кислоте получена серия новых 2-карбоксанилидо-3-арилхиназолин-4-онов, оказавших цитотоксическое действие на раковые клетки M-Hela, не обладающих токсичностью по отношению к линии клеток $Chang\ liver$ в отличие от эталонных веществ доксорубицина и тамоксифена.

Показано, что N-(2-карбоксифенил)оксаламиды, в отличие от N^1 -(2-карбоксифенил)- N^2 -(арил)оксаламидов, в реакциях с анилинами в полифосфорной кислоте образуют незамещённые во второе положение 3-арилхиназолин-4-оны — перспективные для дальнейшей функционализации соединения.

Предложен новый удобный метод синтеза бензимидазо[2,1-b]хиназолин-12(6H)-онов – 6-дезоксо-6-азааналогов природного алкалоида *триптантрина* – из 3-(2-нитрофенил)хиназолин-4(3H)-онов в системе Zn/AcOH.

Показано, что в реакциях N-(2-карбоксифенил)оксаламидов с *орто*-фенилендаминами в полифосфорной кислоте в результате процессов амидирования карбоксильной группы и двойной 6-exo-trig циклизации образуются соединения с редкой хиноксалино[2,1-b]хиназолин-6,12(5H)-дионовой системой.

Получены биядерные комплексы двухвалентной меди с N-(opmo-карбоксифенил)оксаламидными лигандами.

Синтезирован медный 1D координационный полимер с N^1 -(2-карбоксифенил)- N^2 -(4-этилкарбоксифенил)оксаламидным лигандом.

Рекомендации и перспективы дальнейшей разработки темы. Синтезированные в данной работе хиназолиноновые производные двух типов — 2-карбоксанилидо-3-

арилхиназолин-4-оны и незамещённые во второе положение 3-арилхиназолин-4-оны – являются соединениями с большим синтетическим потенциалом и могут стать объектами как для введения фрагментов, делающих их более привлекательными в поиске фармакологически значимых веществ, так и для синтеза веществ с уже известной биологической активностью и практической значимостью. Необходимо расширить серию 2-карбоксанилидо-3-арилхиназолин-4-онов для выявления В ней «лидера» цитотоксическому действию на раковые клетки M-Hela. Следует провести исследования биологической активности конденсированных бигетероциклов – бензимидазо[2,1b]хиназолин-12(6H)-онов и хиноксалино[2,1-b]хиназолин-6,12(5H)-дионов. продолжения работа с медными координационными полимерами в направлении поиска их практического приложения в качестве катализаторов, сорбентов, контейнеров для хранения и транспортировки газов и т.д.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Статьи в рецензируемых изданиях, рекомендованных ВАК при Минобрнауки России для размещения материалов диссертаций:

- 1. Mamedov, V. A. A new and efficient method for the synthesis of 3-(2-nitrophenyl)pyruvic acid derivatives and indoles based on the Reissert reaction / V. A. Mamedov, V. L. Mamedova, V. V. Syakaev, G. Z. Khikmatova, D. E. Korshin, **T. A. Kushatov**, Sh. K. Latypov // Tetrahedron Lett. 2018. V. 59. P. 3923-3925.
- 2. Mamedov, V. A. Facile synthesis of 2-carboxanilido-3-arylquinazolin-4-ones from N^1 -(2-carboxyphenyl)- N^2 -(aryl)oxalamides / V. A. Mamedov, V. L. Mamedova, A. D. Voloshina, **T. A. Kushatov**, V. V. Syakaev, Sh. K. Latypov, A. T. Gubaidullin, D. E. Korshin, D. N. Buzyurova, I. Kh. Rizvanov // Tetrahedron Lett. 2019. V. 60. P. 151205-151209.
- 3. Mamedov, V. A. New and efficient synthesis of 3-arylquinazolin-4(1*H*)-ones and biologically important *N*-fused tetracycles based on *N*-(2-carboxyphenyl)oxalamide / V. A. Mamedov, V. L. Mamedova, V. V. Syakaev, A. T. Cubaidullin, J. K. Voronina, **T. A. Kushatov**, D. E. Korshin, A. I. Samigullina, E. G. Tanysheva, I. Kh. Rizvanov, Sh. K. Latypov // Tetrahedron Lett. 2021. V. 82. P. 153327 (6).
- 4. Mamedov, V. A. Synthesis and crystal structure of the new copper(II) coordination polymer with N^1 -(2-carboxy-phenyl)- N^2 -(4-ethylcarboxyphenyl)oxalamide as ligand / V. A. Mamedov, V. L. Mamedova, V. V. Syakaev, **T. A. Kushatov**, D. E. Korshin, I. Kh. Rizvanov, A. T. Gubaidullin // Tetrahedron. 2024. V. 150. P. 133751 (10).

Тезисы докладов:

- 1. Хикматова Г. З. Амид 3-(2-нитрофенил)-2,3-эпоксипропионовой кислоты в синтезе индол-2-карбоновой кислоты и её производных / В. Л. Мамедова, Г. З. Хикматова, Д. Э. Коршин, **Т. А. Кушатов**, В. А. Мамедов // XX Молодежная школа-конференция по органической химии. Казань, 18-21.09.2017. Сборник тезисов. С. 226.
- 2. Mamedova V. L. N^1 -(2-Carboxyphenyl)- N^2 -(aryl)oxalamides as versatile reagents in organic synthesis / V. L. Mamedova, A. T. Gubaidullin, **T. A. Kushatov**, G. Z. Khikmatova, V. A. Mamedov // 3rd Russian conference on medical chemistry. Kazan, 28.09-03.10.2017. Book of abstracts. P. 156.

- 3. Samigullina A. I. Supramolecular structure of new functionally substituted quinazolines / D. E. Korshin, A. I. Samigullina, **T. A. Kushatov**, V. L. Mamedova, A. T. Gubaidullin // 1st Russian-Chinese workshop on Organic and Supramolecular Chemistry. Kazan, 27-29.08.2018. Book of abstracts. P. 41.
- 4. Мамедов В. А. Перегруппировки эпоксидов в синтезе карбо- и гетероциклических систем фармацевтического назначения / В. А. Мамедов, В. Л. Мамедова, С. Ф. Кадырова, В. Р. Галимуллина, Г. З. Хикматова, Д. Э. Коршин, **Т. А. Кушатов**, С. В. Мамедова, Е. Л. Гаврилова, Л. Я. Захарова, О. Г. Синяшин // Научная конференция грантодержателей РНФ. Современные тенденции в химии, биологии, медицине «От молекулы к лекарству». Казань, 26-28.11.2018. Сборник тезисов. С. 12.
- 5. Mamedova V. L. Copper coordination polymers based on N^1 -(2-carboxyphenyl)- N^2 -(aryl)oxalamides / V. L. Mamedova, **T. A. Kushatov**, D. E. Korshin, A. T. Gubaidullin, M. K. Kadirov, V. A. Mamedov // Markovnikov congress on organic chemistry. Moscow-Kazan, 21-28.06.2019. Book of abstracts. P. 139.
- 6. Korshin D. E. New functionally substituted quinazolines: single crystal and pxrd analysis / D. E. Korshin, A. I. Samigullina, **T. A. Kushatov**, V. L. Mamedova // XI International conference on chemistry for young scientists "Mendeleev 2019". Saint Petersburg, 9-13.09.2019. Book of abstracts. P. 280.
- 7. **Кушатов Т. А.** Синтез биологически значимых конденсированных систем хиноксалино[2,1-b]хиназолин-6,12(5H)-дионов / Т. А. Кушатов, В. Л. Мамедова, В. В. Сякаев, Ю. К. Воронина, В. А. Мамедов // Всероссийский конгресс по химии гетероциклических соединений «KOST-2021». Сочи, 12-16.10.2021. Сборник тезисов. С. 345.